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A general four-dimensional normal form of a double Hopf bifurcation is
considered. As a particular case, the normal form of a forced (non-autonomous)
non-linear oscillator having two frequencies, namely the linear natural frequency
and the excitation frequency, is studied in detail. When these two frequencies form
two purely imaginary sub-blocks of order two in the real Jordan block, the system
constitutes a double Hopf bifurcation. In this paper, the normal form of the double
Hopf bifurcation is reduced when the two frequencies are not in resonance. In order
to use the method of normal form, the non-autonomous problem is transformed
into an autonomous one by a generalized co-ordinate transformation. The method
of undetermined coe$cients is used to "nd the double Hopf bifurcation normal
form. The coe$cients of similar monomials rather than similar powers of e are
compared to get the normal form to various orders. The steady state periodic
solutions and the bifurcation equations of the forced non-linear vibration system in
the case of non-resonant are studied. A Mathematica program is designed to "nd
the normal form. Three examples are given to use the Mathematica program and to
compare them with the existing results.

( 2000 Academic Press
1. INTRODUCTION

The normal form theory plays an important role in the study of bifurcation
behavior of di!erential dynamical systems [1]. The normal forms for most
two-dimensional dynamical systems have already been computed. Theoretically, it
is always possible to calculate the coe$cients of the normal form for a given system.
The coe$cients of the normal form can be calculated by the methods of matrix
representation, adjoint operator and symplectic representation theory sl(2, R) [2].
In many cases, the calculation procedures are too di$cult and complex as the
number of dimensions and the order of the system increase. The calculation of the
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coe$cients of the normal form is an indispensable work when one analyses from
a practical viewpoint. The coe$cients of the Hopf bifurcation normal form in
generate and degenerate cases have been calculated in references [3, 4]. The
coe$cients of the Hopf bifurcation normal form compare the coe$cients of similar
monomials.

Some recent development of the theory of normal form can be found in references
[5}10]. Hsu [5, 6] gave some extensive normalization formulae. Warner et al. [7]
relaxed the restricted class of co-ordinate transformation. Villard [8] developed
some fast parallel algorithms for matrix reduction to normal forms. Yu [9]
computed the normal forms via a perturbation technique. Zhang et al. [10] used
the equivalence of normal form and averaging to simplify the normal form
calculation.

Jezequel and Lamarque [11] considered the forced vibration of a non-linear
oscillator by transforming the single-degree-of-freedom system into four "rst order
di!erential equations. They used the method of matrix expression, "ve lines up
from the bottom of p. 431 of reference [11], and considered cubic non-linearity only
in their example leading to 20-term normal transforms of order 3.

The method of undetermined coe$cients is used in the present paper. It is easy to
understand and simple to program for any non-linear terms of the form f (x, dx/dy).
The coe$cients of the normal form of the double Hopf bifurcation are reduced
when the two frequencies are not in resonance by the method of undetermined
coe$cients in the present paper. A simple and e$cient program is given in reference
[12] to calculate the coe$cients of the normal form by using the symbolic
computer algebra system MATHEMATICA with strong non-linearity.

Some well-written books on normal forms are available [13}16]. However, due
to the intrinsic complicated transformation, only examples of autonomous
single-degree-of-freedom systems involving two "rst order equations have been
given in most cases. The present method is di!erent from that of Nayfeh [13] who
equates the coe$cients of similar powers of e while the present method compares
the coe$cients of similar monomials.

The normal form is equivalent to many other methods, like averaging [17].
However, to study the non-linear vibration problems by the normal form method is
simpler and more e$cient than many traditional methods. The normal form
method can study both the vibration behavior of a non-linear vibration system and
its bifurcation behavior.

One usually applies the method of central manifold [18] to reduce the number of
di!erential equations con"ned to the central manifold before carrying out a normal
form analysis. In order to study a non-autonomous system or a forced vibration
system by the method of normal form, a generalized co-ordinate transformation is
required to change the non-autonomous system to an autonomous system. In this
paper, the method of undetermined coe$cients is used to "nd the double Hopf
bifurcation normal form.

To illustrate the applications of the listed MATHEMATICA program in
Appendix A, three well-known examples (forced Van der Pol, Du$ng and Van der
Pol}Du$ng oscillators) are given. The program can handle any regular non-linear
terms of the form f (x, dx/dy) without modifying the program.



2. NORMAL FORM FOR DOUBLE HOPF BIFURCATION

Double Hopf bifurcation system is a very important co-dimension two
bifurcation system. Consider the following four non-linear ordinary di!erential
equations representing the central manifold of a double Hopf bifurcation whose
linear part is already in the Jordan form

Z0 "A(k)Z#H(Z), (1)
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Z"(z
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Z is a 4-vector. Z is the set of positive integers. C is the set of complex numbers. k is
a small parameter. j

i
(k) are the purely imaginary eigenvalues. AZ is the linear part

which is already in the Jordan form. H (Z) is the non-linear part, H (0)"DH(0).
DH(Z) represents the Jacobian matrix of H with respect to Z. An over bar denotes
complex conjugate. The equilibrium point is already shifted to the origin of k so
that Re j

1
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3
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1
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3
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. The non-resonance

condition is n
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One uses the following de"nition and theorem to calculate the normal form of
equations (1). The e!ect of the parameter k on the normal form can be omitted
when the parameter k is small [2]. One calculates the normal forms for k"0
instead of kO0. The results are also valid when k is treated as a non-zero
parameter.

De5nition 1. Zm"zm1
1

zN m2
1

zm3
2

zN m4
2

is called a resonant monomial [18] if
Sm, kT!j

3
"0 is satis"ed, where m"+ m

i
*2 and m

i
is an integer greater than

or equal to zero, S ) , ) T is the scale product and S3M1, 2,2, nN.
The symbol m stands either for the 4-vector Mm
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according to the context. k"(j

1
, j

2
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3
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4
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Theorem 1. If the linear part of a system is in diagonal (block) form, then the normal
forms for such a system are all combinations of the resonant monomials [18].

Now one proceeds to the calculation of the normal form of the "rst equation in
equations (1). The resonant condition according to De"nition 1 is

Sm, kT!j
1
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3
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3
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4
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4
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"0, (2)

where j
i
"j

i
(0), for i"1, 2, 3, 4
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It is impossible for +4
i/1

m
i
"2 in equation (2). The normal form associated with

the second order homogeneous polynomials in equation (1) does not exist.
Consider the case where +4

i/1
m

i
"3. The solutions of equation (2) are (a) m

1
"2,

m
2
"1, m

3
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4
"0 and (b) m
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2
"0. Therefore, two resonance

monomials exists. Thus, the normal form of the "rst equation of equations (1) is
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Similarly, one can calculate the normal form of the third equation in equations (1).
One notices that the second equation in equations (1) is the conjugate of the "rst
one and the fourth equation in equations (1) is the conjugate of the third one. The
normal form of equations (1) in complex form is
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In polar co-ordinates, it is
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3. CALCULATE THE COEFFICIENTS OF THE NORMAL FORM

In order to calculate the coe$cients of the normal form for equations (1) up to
order three, one takes the near identity change of variables:
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in which, comma denotes partial di!erentiation and p"k#l#m#n.
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Substitute equations (6) and (4) into equations (1), and compare the coe$cient in
both sides for every monomial; then, the coe$cients of the normal form are found
as
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where

H
j,klmn

"

LpH
j
(0)

Lkz
1
LlzN

1
Lmz

2
LnzN

2

, p"k#l#m#n.

The present method is di!erent from that of Nayfeh [13] who equates the
coe$cients of similar powers of e while the present method compares the
coe$cients of similar monomials. Therefore, the present method is more general
and can handle all non-resonance double Hopf bifurcation.

4. THE MATHEMATICA PROGRAM

A concise program in Mathematica language [19] is given in Appendix A for
a non-linear oscillator of a single degree of freedom:

d2x
dt2

#2nk
dx
dt

#w2x"k f Ax,
dx
dtB#G sin(lt#u).

The "rst two lines are the parameters and functions input by the user. The "rst line
fxy"f (x, dx/dy) is the non-linear terms of the non-linear oscillator. The second
line ,"u is the initial phase of the exciting force and w is the linear frequency.
After running, the result is saved to "les with the "lename &&olamdal'' which is the
frequency of the system, &&oal& 1''which is the coe$cient of normal form a

11
, &&oal12''

which is the coe$cient of normal form a
12

, and &&ox'' which is the solution x of the
original system.

5. EXAMPLES

Example 1. Consider the generalized Van Der Pol equation

d2x
dt2

#x!k (1!x2)
dx
dt

"G sin lt, (8)

where k is the mark of small quantity for a weakly non-linear system. This
non-linear system is non-resonant when l is not an integer.

Let f
1
"Ge~*lt, f

2
"Ge*lt, dx/dt"y; then equation (8) can be transformed to the

non-linear di!erential equations of the "rst order.

xR "y,

yR "!x#ky!kx2y#i
f
1
!f

2
2

,

(9)
fQ
1
"!il f

1
,

fQ
2
"il f

2
.
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The eigenvalues of the above equations are

j
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2
(k#iJ4!k2), j

2
"1

2
(k!iJ4!k2), j

3
"!il, j

4
"il.

Take a linear transformation of co-ordinate:

MXN"[D]MZN, (10)

where [D] is the matrix of the eigenvectors of the linear part in equations (9),

MXN"[x, y, f
1
, f

2
]T, MZN"[z
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1
, z

2
, zN

2
]T.

After substituting the above transformation into equations (9), one obtains the
equations in forms of equations (1), in which
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Substituting a
11

, a
12

, a
21

, a
22

into equations (4), the normal form of equations (9) is
obtained:
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1
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In order to analyze the characters of the solution, one should rewrite equations (11)
in their original physical co-ordinates:

Since x"j
2
z
1
#

1
2[kl#i (1!l2)]

z
2
#its conjugate parts,

z
1
"u

1
O(k), zN

1
"uN

1
#O(k),

u
2
"f

1
"G e~*lt, uN

2
"f

2
"G e*lt ,

therefore x"2r
1
sin h#

G
1!l2

sin lt#O (k). (12)

Let r
1
"r/2, and substituting it into equations (5), the asymptotic solution of the

generalized Van der Pol equation is obtained:

x"r sin(h)#
G

1!l2
sin lt,

dr
dt

"

r
2 C1!

r2
4
!

1
2

G2

(1!l)2D k, (13)

dh
dt

"1#k2 C!
1
8
#

3
16

r3#
1

8(1!l2)2
G2D .

In the steady state, rR"0, the solution is either the trivial state r"0 or the
bifurcated state 1!r2/4!G2/2(1!l)2"0, which gives the condition for a limit
cycle: r2"4!2G2/(1!l)2'0 or G2'2(1!l)2.

The above results can directly be obtained by using the program in Appendix A.
The results in equations (13) will be the same as the results obtained by KBM
averaging method [20] if one omits the terms of O(k2) in the last equation of
equations (13).

Example 2. Consider the Du$ng equation

d2x
dt2

#u2x#2nk
dx
dt

"!kx3#G sin(lt#n/2). (14)

This non-linear system is non-resonant when n
1
u#n

2
lO0.

To compare equations (14) with the equation in section 4,
fxy"f (x, dx/dt)"!x3, ,"u"n/2, one substitutes these terms into the program
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in Appendix A to obtain

j
1
"Jw2!n2k2i!nk,

a
11
"

1)5k

w2Jw2!n2k2
i,

(15)

a
12
"

3k

4Jw2!n2k2[4n2l2k2#(l2!w2)2]
i,

x"
2r

1
w

sin h#
G

(w2!l2)
sinAlt#

n
2B .

Let r
1
"r/2, and substituting into equations (5), the asymptotic solution of the

Du$ng equation is obtained:

x"r sin(h)#
G

(w2!l2)
cos lt,

dr
dt

"!nkr, (16)

dh
dt

"Jw2!n2k2#k
3
8 C

r2

Jw2!n2k2
#

2G2

Jw2!n2k2[(w2!l2)2#(2nlk)2]D .

The results in equations (16) will be the same as the results obtained by KBM
averaging method if one omits the terms of O (k2) in equations (16). No limit cycle is
possible.

Example 3. Consider the generalized Van der Pol}Du$ng equation

d2x
dt2

#u2x#2nk
dx
dt

"k (b
1
x2y#c

1
x3)#G sin(lt). (17)

This non-linear system is non-resonant when n
1
u#n

2
lO0.

To compare equations (17) with the equation in section 4. fxy"f (x,
dx/dy)"b

1
x2y#c

1
x3, ,"u"0. Substitute these terms into the program in
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Appendix A to obtain

j
1
"Jw2!n2k2i!nk,

a
11
"

!k (1)5c
1
!1)5b

1
nk#0)5b

1
Jw2!n2k2 i)

w2Jw2!n2k2
i,

(18)

a
12
"!

k[3c
1
#b

1
(!nk#Jw2!n2k2 i)

4Jw2!n2k2[(2nlk)2#(l2!w2)2]
i,

x"
2r

1
w

sin h#
G

(w2!l2)
sin lt.

Let r
1
"r/2, and substituting it into equations (5), the asymptotic solution of the

Van der Pol}Du$ng equation is obtained:

x"r sin(h)#
G

w2!l2
cos lt,

dr
dt

"rkA!n#
b
1
8

r2#
b
1
G2

4[(2nlk)2#(l2!w2)2]B , (19)

dh
dt

"Jw2!n2k2#
3k(b

1
nk!c

1
)

8Jw2!n2k2
r2!

(3c
1
k!b

1
nk2)G2

4Jw2!n2k2[(2nlk)2#(l2!w2)2]
.

The results in equations (19) will be the same as the results obtained by KBM
averaging method if the terms of O (k2) are omitted in equations (19).

In the steady state, rR"0, the solution is either the trivial state r"0 or the
bifurcated state

!n#
b
1
8

r2#
b
1
G2

4[(2nlk)2#(l2!w2)2]
"0

which gives the condition for a limit cycle:

r2"
b
1
8 Gn!

b
1
G2

4[(2nlk)2#(l2!w2)2]H'0 or n'
b
1
G2

4[(2nlk)2#(l2!w2)2]
.

This example shows that normal form method is much simpler than the traditional
method to solve the forced non-linear vibration problems.
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6. CONCLUSION

The normal form method has been extended to study non-autonomous system
by transforming a non-autonomous system into an autonomous system. The
simple relationships between the coe$cients of normal form and the coe$cients of
the original equations are obtained. The calculation of the coe$cients of the
normal form for the double Hopf bifurcation in the case of non-resonant is greatly
simpli"ed by symbolic computation. The present method is di!erent from that of
Nayfeh [13] who equates the coe$cients of similar powers of e while the present
method compares the coe$cients of similar monomials. Therefore, the present
method is more general and can handle all non-resonant double Hopf bifurcation
in a simple program.
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APPENDIX A: A MATHEMATICA PROGRAM

fxy"non-linear terms of the non-linear oscillator;
,"the initial phase of the exciting force
Program
fxy"b1 x'2 y#c 1 x'3;
,"0;
f"M0, mu, fxy, 0, 0N;
a"MM0, 1, 0, 0N, M!w'2,!2*n*mu, I/2,!I/2N,

M0, 0,!(I*v), 0N, M0, 0, 0, I*vN;
b"Eigenvalues[a];
c"Eigenvectors[a];
If [b[1]]""!(I*v), d"
Transpose[c]. MM0, 0, 1, 0N, M0, 0, 0, 1N,
M0, 1, 0, 0N, M1, 0, 0, 0NN, warn,

d"Transpose[c]]. MM0, 1, 0, 0N, M1, 0, 0, 0N,
M0, 0, 1, 0N, M0, 0, 0, 1NN;

id"Inverse[d];
1a"Simplify[id .a.d];
z1"Mz1, z2, z3, z4N;
x"d[[1]] . zl;
y"d[[2]] . z1;
bh"id . f;
h1"bh[[1]];
h1b"bh[[2]];
lamd1"1a[[1,1]]Aolamdal
lamd2"la[[2,2]];
lamd3"1a[[3,3]];
lamd4"la[[4,4]];
dh[hh

}
, k
}
, l
}
, m
}
, n
}
] :"

D[hh, Mz1, kN, Mz2, 1N, Mz3, mN, Mz4, nN]/.
Mz1!'0, z2!'0, z3!'0, z4!'0N;

a 11"Simplify[dh[h1, 2, 1, 0, 0]/2.#
(dh[h1, 1, 1, 0, 0]*dh[h1, 2, 0, 0, 0])/lamd2!
dh[h1, 0, 2, 0, 0]'2/(2*lamd2!4*lamd1)#
dh[h1, 1, 1, 0, 0]'2/lamd1#
(dh[h1, 1, 1, 0, 0]*dh[h1, 2, 0, 0, 0])/2*lamd1)]C

A&&oa11''
a12"Simplify[dh[h1, 1, 0, 1, 1]#

(dh[h1, 1, 0, 0, 1]*dh[h1, 1, 0, 1, 0])/lamd4!
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dh[h1, 0, 1, 1, 0]'2/(lamd2!lamd4!lamd1)-
dh[h1b, 0, 0, 1, 1]*dh[h1, 1, 1, 0, 0])C
(lamd2!lamd4!lamd3)!
dh[h1, 0, 1, 0, 1]'2/(lamd2!lamd1!lamd3)#
dh[h1, 1, 0, 0, 1]*dh[h1, 1, 0, 1, 0])/lamd3]C

A&&oa12''
z1"r1*E' (I*ct);
z2"r1*E' (!I*ct);
z3"G*E' (!I*(v*t#,));
z4"G*E' (I*(v*t#,));
x/. mu!'0A&&ox''
Clear[z1, z2, z3, z4]
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